
Introduction to Computing and Systems 
Architecture 

1. Computability 
A task is computable if a sequence of instructions can be described which, when followed, will 

complete such a task. 

This says little really. Therefore, we use Turing machines to allow us to more formally describe 

computability. 

Turing Machine 
The machine can attain a finite number of states. A number of transition rules exist that help govern 

the actions of the machine. A tape of infinite length exists which contains symbols (laid out in a 

linear manner). The tape can be read from (one symbol at a time) or written to (one symbol at a 

time) by the machine’s read/write head. The state of the machine together with the symbol under 

scrutiny (position of the tape), and the transition rules present dictate what the machine will do 

next. For example, if we are in state S1, and we read symbol M1, then move to state S2 and move 

read/write head one to the left. 

By definition a Turing machine (as just described) is deterministic in nature. There also exists non-

deterministic Turing machines. However, these are more for the theorist at this moment in time. 

They are very interesting though. 

A machine, which can be fed data and act upon such data by following rules to produce outcomes 

that are deterministic are all the ingredients we need to start programming. 

Computer 
Going from a Turing machine to a computer is a big engineering leap, but not a great theoretical 

one. One change, theoretically speaking, is a limitation on resources (finite).  

Consider a very simple computer made up of a CPU that has a list of instructions encoded within it 

(instruction set) and has access to memory which can hold data. The memory can be accessed by the 

CPU at any place (random access). The CPU reads memory locations in sequence, and decodes the 

data using its instruction set and does something (either write data back to memory or read data 

from memory). Now, depending on what the CPU is doing (its state) the CPU may decode the 

memory as instructions (as mentioned) or values. For example, add memory location 1 to memory 

location 2 and put the answer in memory location 3 has a few instructions and a few values. 

Now, this seems easy. What could possibly go wrong? Well...... 

What if the CPU reads values and thinks its instructions? What if the CPU writes values into memory 

locations that already contain something (possibly instructions)? What if the person who wrote the 

program doesn’t know what they are doing and writes values over the instructions that are 

responsible for the correct operation of the computer’s basic systems (operating system)? 



 

2. Engineering speed (and complications) 

Geography and magnitude:  

It is much quicker to reach out to the table and find out your friends number on your iphone, but 

takes a lot longer to access the global directory of phone numbers from the Internet..... 

Getting data from memory is very slow compared to the CPU so let’s get a chunk of memory and 

store it close by to speed things up (cache).  

Direct access 

Sometimes it is much quicker to simply google than to ask the teacher....... 

 

The CPU is not the only piece of hardware around in a modern computer, however, traditionally it is 

the only thing that knows how to handle memory. Let’s break this tradition and allow other things to 

access memory directly for reading and writing. Disk drives, graphic cards and many other devices 

need direct memory access (DMA). - (Multi-core use it as well) 

Parallel processing 

Two hands are better than one..... 

Multi-processor and multi-core allow more than one processing element to simultaneously operate 

on the memory (either their own or shared). Sometimes the computer can automate the parallel 

process, but sometimes the programmer has to do it. 

Single Instruction Multiple Data (SIMD) is when an instruction can be applied to many pieces of data 

at the same time. If you have 50 cars and you want to apply the same velocity function to all of them 

this may be for you (note. check PS3 cell architecture). 

Multiple Instruction Multiple Data (MIMD) is when many instructions can be applied to many pieces 

of data at the same time. 

Yes, you may have SISD and MISD. 

3. Caches 
In general a processor has a small amount of memory attached to it, with very fast access. This is 

known as a cache. The processor stores a copy of the most recent data it has accessed in the cache. 

This means that, if the processor needs to read that data again, it is accessed considerably faster 

than if it is accessed from main memory again.  

The time it takes a processor to read a piece of data from memory is known as latency. In effect, the 

processor has to wait until the data becomes available to it. Obviously the smaller the latency, the 

faster the processor can do its job.  Reading from a cache has a much lower latency than reading 

from main memory, as the cache is a piece of physical memory attached to the processor specifically 

designed for fast access. 



If a requested piece of data has been used recently then it is already in the cache, giving a much 

faster latency when accessing it. If the data is not in the cache then what is known as a cache miss 

occurs – ie the data has not been found in the cache, so it has to be accessed from main menu, and 

will be copied into the cache in case it is needed again.  Code which needs to run as optimally as 

possible is designed so that it reuses data in manageable chunks. A thoroughly optimised piece of 

code will work on one section of data, with no cache misses (ie no dependencies on data from other 

parts of memory), before moving on to another chunk of data which will, in turn, fill up the cache for 

reuse. 

A cache consists of a set of rapid access memory locations, known as cache lines – each line 

contains: 

 The address in main memory where the data has been copied from (or the tag). 

 The data itself.   

Cache sizes vary from processor to processor, which means that highly optimised code for one 

processor may result in cache misses, or the opportunity for further cached data, on another 

processor. 

It is important to note that the cache is not physically part of main memory, and that it contains 

copies of the data held in main memory. This means that, if the data in main memory is changed, the 

cached value will not reflect that change – i.e. the cache is not a set of pointers into main memory, it 

is a recent copy of the data in main memory. 

Cache Coherence 
This approach works nicely in a single processor system. However if there is more than one 

processor at work in the system (for example a CPU and a GPU), then an issue arises. We need to 

consider what happens if the data which has been copied from main memory into the cache of one 

processor is changed in main memory by another processor. Further to this, it is possible that two 

processors could have copied the same data from main memory into their respective caches – again 

there is an issue if that data has been copied at different times and each processor is working with 

different values of the data. 

There is therefore a need to ensure that cached data is consistent with the data in main memory 

that it is copied from, and also that the caches of each processor can handle inconsistencies in 

matching data. This is known as cache coherence. 

 

 



 

In order to resolve any inconsistencies between cached memory accesses, a coherency protocol is 

required. Various protocols exist to maintain coherency between distributed caches in a multi-

processor system. 

Sequential Consistency 

This is an early type of coherency protocol.  The protocol requires that the results of the instructions 

carried out on multiple processors are identical to the results if the instructions had been carried out 

sequentially by a single processor.  To achieve this, the protocol must ensure that: 

 All main memory requests (both read and write) are carried out in the order specified by the 

control program 

 Each cache has a single FIFO queue for memory requests (ie first in, first out). 

It can be seen that this ensures that each cache contains the most recent version of data as it is 

being processed – another processor requesting that data can’t read it until the first processor has 

written its changes back to main memory. 

Release Consistency 

This coherency protocol is based on the idea of a processor identifying data as being subject to 

change. It uses two synchronisation operations known as acquire and release - when the processor is 

ready to write to main memory it acquires that data, which prevents any other processor from 

accessing it. When it has finished writing, it releases the data, freeing up that data for other 

processors to acquire. It is similar to the idea of checking out a sourcecode file from a repository 

using SVN. 



Weak Consistency 

This coherency protocol allows for more processes to occur concurrently, by relaxing the rules of 

Release Consistency slightly. Rather than locking out other processors during the whole period from 

the acquire to the release, this protocol ensures that the order of acquires and releases is seen to be 

consistent across all processors, but the order of reads and writes between those events can be seen 

to vary. The sum of the reads and writes between each synchronisation event must also be the 

same. 

4. The Cell and Playstation3 
The Cell Engine Broadband Architecture is a microprocessor developed by IBM, Sony and 

Toshiba. 

The Cell architecture is shown in the diagram below: 

 

 
 
Note: In the PS3 one of the SPEs is “offline/locked out/lanced” and one is dedicated for use by the 

operating system. This leaves six left for game developers. 

Overview 
The PowerPC Processing Element (PPE) may be considered capable of running alone, like any regular 

CPU. However, in this architecture the PPE may be aided in satisfying its computational 

requirements by the Synergistic Processing Elements (SPEs). The Element Interconnect Bus (EIB) 

accommodates communication between PPE, SPEs and external components. 

The PPE may control execution on the SPEs. This can take the form of scheduling processes to run 

and interacting with such processes (e.g., start, stop, interrupt).  

Memory Access 

Standard load/store commands are used throughout the system for memory access by PPE and SPEs 

(just like a regular CPU would use them). However, SPEs may only access their own local store (256 

KB) whereas the PPE can access main memory and the memory of the PPEs. The local store of the 

SPEs is not cache (it is actually considered local memory), but it is high performance Static Random 

Access Memory (SRAM), higher performance than Dynamic Random Access Memory (DRAM) and is 

commonly found in cache architectures. 



PPE main memory access is via cache (the PPE has L1 and L2) that utilises Direct Memory Access 

(DMA) for cache updates. All processing elements (PPE and SPEs) have DMA utilisation capabilities, 

making DMA the main focus of memory movement throughout the system. This allows a PPE to also 

access main memory (and the memory of other SPEs) via its local memory (using a virtual memory 

address to indicate the source of the “get” and a variable to indicate the size of memory to retrieve). 

All caches are cache coherent (access of “stale” memory locations in main memory are avoided). 

However, as the SPEs' local memory is not considered cache then this may prove problematic to 

some programmers. This really makes programmers consider the SPEs as distinct programming 

elements and should be treated as such. 

As an added complication (or bonus, depending on how you look at it) each SPE has a small amount 

of cache (512B). Cache coherence is avoided as requests from other processing units for a memory 

location that is actually in the SPE cache are satisfied from the SPE cache (not the local memory of 

the SPE). This gives a very nice, very fast, shared memory system that exhibits consistency. How you 

use this effectively is not clear, but it may have its uses......... 

5. XBox360 
The Xbox360 also has a multiprocessor architecture, consisting of: 

 3 CPU cores with a shared 1Mb cache. 

 1 GPU with 10Mb embedded cache, and 48 parallel unified shaders. 

The CPU 

The central processing unit is a 64-bit triple-core processor. Each core contains multiple floating 

point processors, and SIMD vector processing units, so the focus of the hardware design is on 

floating point calculations. Each core is capable of simultaneous multithreading, although they utilise 

in-order execution, rather than the more recent out-of-order execution. The cores share a 

comparatively large cache (I Mb), which is accessible at half the CPU clock speed (i.e. significantly 

faster than main memory). 

The GPU 

The key to the GPU’s power in the Xbox360 is the 10Mb cache, which is attached to the GPU on a 

daughter die. This cache is sufficiently large that graphical processes such as alpha-blending, z-

buffering, and full-screen anti-aliasing can be implemented with virtually no performance cost to the 

GPU. 

Each of the 48 shader processors consists of a 5-wide vector unit, capable of executing two 

instructions per cycle – i.e. each shader processor can execute 10 floating-point operations every 

cycle. The shader processors are arranged into three groups of 16 processors each. All processors in 

a SIMD group execute the same instruction, so in total up to three instruction threads can be 

simultaneously under execution. 

Main Memory 

The Xbox360 has 512 Mb of main memory. This memory is shared between the CPU and GPU, via a 

unified memory architecture. For development purposes, this means that there is no distinction 



between “graphics memory” and “main memory”, so the overall memory footprint can be designed 

with the needs of each game in mind.  

The GPU also acts as the memory controller, although this is largely invisible to the developer. 

 

6. Cross-platform development 
Most modern games are released on multiple platforms, unless they are developed by the hardware 

developer’s in-house and first-party teams. There are two approaches which can be taken here: 

 Develop on one platform, and port to the other platforms once the lead platform 

development is complete. 

 Develop on multiple platforms at once, using shared technology as much as possible. 

Both approaches have their advantages and disadvantages. Developing on multiple platforms can 

lead to a better engineered codebase (as much of it has to compile and run in more than one 

development environment), but can also lead to taking the “common ground” of multiple platforms, 

so features which are designed to fully utilise one platform’s abilities are prioritised below cross-

platform functionality. 

In general, the skills and approaches required to run code on one multi-processor platform are the 

same as for another (setting up a code architecture for multi-threading will benefit both Xbox360 

and PS3 development). However getting down to the specifics of what tasks are assigned to the 

processors must be platform-specific. As can be seen in this document, developing code to take full 



advantage of the PS3’s SPU architecture with their minimal caches, is a different challenge to using 

the triple-core processor on the Xbox360 with its much larger cache. 

Identifying which parts of a game engine need to be targeted for platform-specific development is 

an important skill. The key decisions are based on how often a piece of code runs and how much 

data it requires to run. 

 


